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Abstract-The Darcy model with the Boussinesq approximation is used to study the onset of double- 
diffusive natural convection in an inclined porous cavity. Transverse gradients of heat and solute are 
applied on two opposing walls of the cavity, while the other two walls are impermeable and adiabatic. The 
analysis deals with the particular situation where the buoyancy forces induced by the thermal and solutal 
effects are opposing and of equal intensity. The objective of this study is to investigate the critical stability 
of this system in terms of the inclination angle, the aspect ratio of the cavity and the Lewis number. The 
subsequent behavior of the convective flow is also discussed in terms of the governing parameters of the 
problem. Numerical procedures based on the Galerkin and finite element methods are carried out to 
investigate the onset of double-diffusive convection using the linear stability analysis. It is shown that for 
values of Lewis number around unit, overstability is possible provided that the normalized porosity of the 
porous medium E is made smaller than unity. For supercritical convection, the occurrence of multiple 
solutions, for a given range of the governing parameters, is demonstrated. The numerical results also 
indicate the existence of subcritical convective regimes. 0 1998 Elsevier Science Ltd. All rights reserved. 

INTRODUCTION 

Natural convection heat transfer through porous 
media has been studied extensively in the past, owing 
to relevance in many natural and industrial problems. 
A recent review of the literature [l] indicates that the 
bulk of the research effort has been devoted to flows 
induced by a single buoyancy force, namely tem- 
perature gradients. Recently, interest for flows result- 
ing from the combined action of both temperature and 
concentration has surged in view of its fundamental 
importance in various engineering problems. Promi- 
nent among these ,are the migration of moisture con- 
tained in fibrous insulation, grain storage, the trans- 
port of contaminants in saturated oil, the 
underground disposal of nuclear wastes, drying pro- 
cesses, etc. 

Natural convecti.on induced by the variation of both 
temperature and concentration gradients, the so- 
called double diffilsion flow or combined heat and 
mass transfer flow, often exhibits special features that 
lack counterparts in flows driven by a single buoyancy 
effect. This follows, from the fact that heat and solute 
diffuse at different rates such that complex flow struc- 
tures may be expea;ed. Relative to the research activity 
on buoyancy flows driven by a single buoyancy effect, 
the work on double-diffusion in porous media pri- 
marily focused on the onset of convection in a hori- 
zontal layer heated and salted from below [2-51. On 
the basis of a linear stability analysis, criteria for the 
onset of motion, via stationary and oscillatory modes, 

were derived for various conditions. Finite amplitude 
convection in a square cavity heated from below has 
been investigated numerically by Rosenberg and 
Spera [6] for a variety of boundary and initial con- 
ditions on the salinity field. The flow dynamics were 
found to depend strongly on the solutal to thermal 
buoyancy ratio N. Double-diffusive convection in a 
horizontal porous layer has been considered by Chen 
and Chen [7] on the basis of the Darcy equation, 
including Brinkman and Forchheimer terms. The 
stability boundaries which separate regions of differ- 
ent types of convective motion (steady, periodic and 
unsteady) were numerically identified in terms of ther- 
mal and solute Rayleigh numbers. 

Available studies with double-diffusive natural con- 
vection in confined porous media are concerned 
mostly with rectangular cavities submitted to hori- 
zontal temperature and concentration gradients [8]. 
The cases of both the augmenting double-diffusion, 
where the flow is driven in the same direction by the 
thermal and solutal forces, and the counteracting con- 
vection, where the flow is driven in opposite directions 
by the two driving forces, have been investigated and 
contrasted. In the case of augmenting double- 
diffusion, Trevisan and Bejan [8] completed an ana- 
lytical and numerical study relative to heat and mass 
transport processes through a vertical porous layer 
subject to uniform fluxes of heat and mass from the 
side. Their results, valid only for the case Le = 1, were 
extended by Alavyoon [9] and Mamou ef al. [lo], 
using the parallel flow approximation, to account for 
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NOMENCLATURE 

aspect ratio, W/W 
solutal diffusivity 
acceleration due to gravity 
height of the enclosure 
permeability of the porous medium 
thermal conductivity of the saturated 
porous medium 
Lewis number, cc/D 
total number of nodes, 
m = (2N,+ 1) x (2N,+ 1) 
total number of elements, N, x N+ 
number of elements in x-direction 
number of elements in y-direction 
buoyancy ratio, psAS’/bTAT’ 
Nusselt number, eqn (14) 
solutal Darcy-Rayleigh number, 
g/?KAS W’/Dv 
thermal Darcy-Rayleigh number, 
gfiKAr W’/av 
critical thermal Rayleigh number 
constant, eqn (34) 
normalized thermal Darcy-Rayleigh 
number, RT/l R”( 
dimensionless concentration, 
(S - So)/AS 
higher concentration of the hot wall 
lower concentration of the cold wall 
reference concentration, 
so = (S;, + s9/2 
characteristic concentration, 
&--SL 
Sherwood number, eqn (14) 
dimensionless temperature, 
0” - 7”,)/AT 
temperature of the hot wall 
temperature of the cold wall 

G reference temperature, 
rg =(T;,+T;)/2 

AT characteristic temperature, TH - T;. 
t dimensionless time, t’a/(aW”) 
u, v dimensionless velocities in x- and y- 

directions, (u’, v’) IV/E 
IV width of the enclosure 
x, y coordinate system, (x’,y’)/W’. 

Greek symbols 
thermal diffusivity (k/(p)3 
solutal expansion coefficient 
thermal expansion coefficient 
normalized porosity of the porous 
medium, E = d/a 
eigenvalue 
kinematic viscosity of fluid 
density of fluid 
heat capacity of fluid 
heat capacity of saturated porous 
medium 
heat capacity ratio, @c),/@c)~ 
porosity of the porous medium 
dimensionless stream function, ‘Y/IX 

Superscripts 
,[ I-’ inverse of a matrix 

dimensional variable. 

Subscripts 
C pure diffusive state 
max maximum value 
min minimum value. 

Operators 
Scf> = sin @ (@/ax) + cos @ (8fiJy) 
Jcf 9) = [cz%Nwx)l - [G!!wm/wl. 

the case of Le # 1 and the inclination of the enclosure, 
respectively. The Nusselt and Sherwood numbers, pre- 
dicted by these authors, were found to be in good 
agreement with numerical solutions for a large range 
of the governing parameters. The case of natural con- 
vection in a porous enclosure, due to opposing buoy- 
ancy forces, has also been considered recently [l l- 
131. Of particular interest is the flow regime occurring 
when N N - 1. For this situation, the most striking 
effect is the very weak convection resulting from the 
fact that the buoyancy forces are comparable in size 
but have opposite signs [lo, 111. In this limit the 
existence of oscillating convection has been reported 
by Alavyoon et al. [ 121. Also, as demonstrated ana- 
lytically and numerically by Mamou et al. [lo, 131, 
multiple patterns of convection are possible for a given 
range of the governing parameters. Recently, Mamou 

et al. [14] considered the problem of a tall porous 
cavity, subject to constant fluxes of heat and mass on 
its long side walls. Their attention was focused on 
the particular situation where the opposing buoyancy 
forces are of equal intensity (N = - 1). It was dem- 
onstrated analytically that there exists a critical Ray- 
leigh number below which the fluid remains at rest. 
Above this critical value, their analytical results show 
that two convective solutions (one stable and the other 
unstable) bifurcate from the rest state. 

The peculiar behavior of double-diffusive con- 
vection occurring when N = - 1 motivates the present 
study. The specific problem considered here is the 
study of the onset of double-diffusive convection 
within an inclined cavity, when the thermal and solutal 
buoyancy forces are equal and in opposite direction. 
In the following sections the mathematical for- 
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mulation for the problem is first given. Then, a 
numerical linear stability analysis is performed to 
investigate the onset of motion. Subsequently, a 
numerical simulatilon of the full governing equations 
is carried out to study the flow and heat transfer rates 
at supercritical Rayleigh numbers. Finally, the results 
from the numerical computations are discussed in 
detail. 

PROBLEM DESCRIPTION AND MATHEMATICAL 
MODEL 

The system considered in this study is the two- 
dimensional inclined rectangular porous cavity shown 
in Fig. l(a). The enclosure is of height IS’, width W’ 

and is tilted at an angle @ with respect to the hori- 
zontal plane. The wall at x’ = - W’/2 represents the 
low-temperature ( 7”L) and low-concentration (SL) 
boundary, and the wall at x’ = W’/2 denotes the high- 
temperature (7$) and high concentration (XL) bound- 
ary. The other two walls are regarded as being insu- 
lated and impermeable. The fluid saturated porous 
medium is assumed homogeneous and isotropic and 
inertial effects are neglected. The solution that satu- 
rates the porous matrix is modeled as a Boussinesq 
incompressible fluid whose density variation can be 
expressed as 

P = p,[l-8,(7*-~“,)--B,(S-Sb)l (1) 
where /?T and fis are the thermal and concentration 

-H’/2 

4 
YA .L 

b) 
Fig. 1. (ar) Geometry of the problem ; (b) finite element mesh ; (c) nine-node Lagrangian element. 
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expansion coefficients. Subscript 0 stands for a ref- 
erence state. 

The equations governing the conservation of 
momentum, energy and constituent in the solution- 
saturated porous medium are (see for instance 
Mamou et al. [lo]) 

V’S’= -R,cF_(T+NS) (2) 

$+J(Y, 7) = V’T 

8: +J(Y, S) = LeC’V’S (4) 

where the operators S and J are defined in the 
nomenclature and Y is the stream function, given by 

dY ay 
u=- u=-- 

aY ax 

such that the continuity equation is automatically sat- 
isfied. 

The above equations were nondimensionalized by 
introducing the following variables 

T J-h+Tt 
0 2 

S-So 
S= AS 

AS = SH-SL 

s 

II 
= sk+s’, 

2 J 

where u’ and u’ are the volume-averaged velocity com- 
ponents, 1” and S the temperature and the con- 
centration of the constituent, t’ is the time, a is the 
thermal diffusivity of the porous medium, cr is the 
saturated porous medium to fluid heat capacity ratio, 
and E = C#I/O is the normalized porosity of the porous 
matrix. 

The dimensionless boundary conditions sketched in 
Fig. 1 are expressed by 

y=*; y=o aT2z~o i 
(7) 

ay ay 

The non-dimensionalization process results in the 
appearance of six dimensionless parameters in the 
governing equations and boundary conditions, 
namely the thermal Darcy-Rayleigh number RT, the 
solutal to thermal buoyancy ratio N, the Lewis num- 
ber Le, the cavity aspect ratio A, the normalized 
porosity E and the inclination angle of the cavity a’, 
defined as 

gB,KAT W’ 
RT = uv 

N _ BsAS 
BTAT 

where Kis the permeability of the porous medium and 
D the mass diffusivity through the fluid mixture. 

It is noted that the volumetric expansion coefficient 
due to temperature change, defined as 
bT = - (l/p0)(ap/8T’) is normally positive, but the 
volumetric expansion coefficient for concentration, 
defined as bs = - (l/p,)(ap/aS’) can be either positive 
(N > 0) or negative (N < 0). For the boundary con- 
ditions prescribed by eqn (7) it is clear that a positive 
value of N results in augmenting convection, since 
the temperature-induced buoyancy is along the same 
direction as the solute-induced buoyancy. In contrast, 
when N is negative it is expected that the resulting 
convection will be considerably weakened by the 
counteracting thermal and solutal buoyancy forces. 

The foregoing analysis is concerned with the special 
case N = - 1 for which the thermal and solutal buoy- 
ancy forces are equal and opposite. For this situation, 
it is clear that a rest state (Y = 0), where heat and 
mass are being transferred via pure diffusion, is a 
possible solution for the steady state form of eqns (2)- 
(4) and (7). Whether or not this no-flow solution will 
remain stable, regardless of how high a RT is imposed, 
has to be determined by a stability analysis. In this 
context, it is convenient to consider the pure diffusive 
solution as a part of the total solution. Thus, we intro- 
duce the following transformation 

Y = Yc+$(t,x,y) 

T= T,+b(t,x,y) (9) 

S = Sc+@(t,x,Y) I 

where the static state of the system is characterized by 

Yc=O T,=&=x (10) 

Substituting the above expressions into eqns (2)- 
(4) and making N = - 1 yields the following system 
of governing equations 

V’$ = - R,F(b-@) (11) 

; + $ + J($, 8) = V’6’ (12) 

8% + g + J($, 9) = Le-‘V2@ 
ay 

(13) 

. 
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The heat and mass transfer rates across the system 
can be expressed by the overall Nusselt (Nu) and Sher- 
wood (Sh) numbers which are important in engin- 
eering applications. They are, respectively, defined as 

(14) 

LINEAR STABILITY ANALYSIS 

In this section, the physical situation described by 
eqns (1 l)-( 13) is examined from the standpoint of 
stability to small perturbations from the equilibrium 
state. 

As usual, the functions $, I!? and + are expanded 
in their normal modes, assuming separability, in the 
following way 

$0, .w,v) = @W&V) 

0(t, X, y) = ep’B(x, y) (15) 

@(& .r,y) = e”‘cp(X,Y) I 

where p is the growth rate of the perturbation. 
Introducing the above functions into eqns (1 I)- 

(13), dropping second higher-order non-linear terms 
in the perturbations, one obtain the following set of 
linearized equations 

V’ll/ = - R,ZF(O-cp) (16) 

pB+L,2, ay 
a* spq+ - = Le-‘V2q 
ay 

(17) 

(18) 

with the boundary conditions 

x=+;i ti=e=(p=o 

y= *; *=$=$o 
(19) 

In general, the solution of eqns (16)-( 18) is not 
limited to a single Fourier component in either x or 
y-direction and therefore an analytical process can be 
tedious. For this reason, the Galerkin finite element 
method is used to solve the above linear system of 
equations. 

Using the Green theorem, the variational for- 
mulation of eqns (161)-( 18) yields the following Galer- 
kin integrals 

= - VB.V9dR+ $9dI- 
s 

(21) 
Cl s 

= - 
s 

Le-‘Vrp*V$dR+ Le-r$BdT (22) 
n I r 

where n is the outward-oriented normal vector, dI’ 
is the infinitesimal portion length of the boundary 
XJ = I, wand 9 are the shape functions satisfying the 
boundary conditions in eqn (19). According to the 
boundary condition of *, 6 and cp, the boundary inte- 
grals (jr) in eqns (20)-(22) known as the natural 
boundary conditions are ml (for more detail see Ref. 
M). 

In the following sections the conditions for station- 
ary instability will be first discussed. Then, the bound- 
ary for oscillatory instability will be delineated. 

Instability via stationary convection p = 0 : finite 
element method 

We consider here the marginal state of stability 
via stationary convection, for which the exchange of 
stability is valid. 

The BubnovGalerkin procedure based on the nine- 
noded biquadratic rectangular elements (see Fig. lb- 
c) was used to discretize the perturbed governing eqns 
(20)-(22). In each element, the unknown variables 
(i.e. $, fI and cp) are approximated by the following 
expansions 

where Oj(x, y) are the Lagrangian shape functions 
(Norrie and Vries [ 16]), while tij, 0, and qj are nodal 
values. 

For each element, the numerical procedure yields 
the element matrix equations. After assemblage of all 
the element matrices into the global matrices, one 
can obtain the following systems of space-discretized 
equations (see [16, 171) 

[%l{b+I = RTPl~~--rp~ (24) 

mw = wm (25) 

[Ll{ti> = Le-’ Kl{cpI (26) 

where [B], [K,], [Kj and [L] are m x m square matrices 
whose components are functions of the orientation 
angle Q, and the aspect-ratio A of the cavity; 
m =(2N,,+ 1) x (2N,+ 1) is the total number of 
nodes in the discretized domain. 

Specifically, these matrices are defined by 



1518 M. MAMOU et al. 

[B] = Y(@,)@dQ [L] = - 
s n 

[KJ = VO;V@ dQ [Kj = 
s 

V@;VC$dR 
n s R 

(27) 

The above integrals are evaluated by the use of the 
Gauss integration formulae. It is noted that, upon 
introducing the boundary conditions from eqn (19), 
the matrices [KJ and [K] become different from each 
other. The Dirichlet boundary conditions in eqn (19) 
are introduced in the above systems of equations with- 
out altering the size of the matrices. In eqn (24), if i is 
the subscript of a known nodal value of iji on r the 
ith row and the ith column of [KJ are set equal to 
zero and [K&is set equal to unity. On the other hand 
the ith row of [B] is set equal to zero. The same 
technique is applied for eqns (25) and (26). An outline 
of the procedure used here is given by Norrie and 
Vries [16] and Huebner et al. [17]. 

From eqns (25) and (26) it is clear that {cpj = Le{e} 
such that the linear system of eqns (24)-(26) reduces 
to 

&u-w[a{$J-{(J/~ = 0 (28) 
where [Ej is an m x m square matrix defined as 
WI = VW’[~I[W’Kl. 

The above equation can be rearranged to the fol- 
lowing canonical form 

WI -ml ($1 = 0 (29) 

where I is the identity matrix, 1 is the eigenvalue 
defined such that 

R,(l-Le) =; (30) 

and {$} is the eigenvector. 
To perform the required matrix algebra, com- 

putations were carried out on an IBM 9000 using 
double precision subroutines of the IMSL library. The 
solution of eqn (29) gives m eigenvalues of [Ej and the 
corresponding stream function fields. The tem- 
perature {0} and concentration {cp} fields are then 
obtained from eqns (25) and (26) as 

(0) = [lul-‘[4{ti} {cp> = -NW’[~l{~) 

(31) 

The eigenvalues of (29), can be rearranged as fol- 
lows 

such that 

{A> =(&,&,...,&J (32) 

1, <i, <... < <& .m-1. (33) 

Then, the supercritical Rayleigh number for the 
onset of motion can be obtained from 

RO -~ RTc - (1 -Le) (34) 

where R” is a constant depending only on the incli- 
nation angle @ and the aspect ratio A of the cavity. It 
can be shown that 

RO =A, whenL.e > 1 1 
Al 

R" =f, whenLe< 1 
m 

(35) 

From eqn (34) it is clear that when Le --f 1, the 
critical Rayleigh number for the onset of motion tends 
towards infinity. 

For a square cavity (A = 1), the computed values 
of p are given in Table 1 for various inclination angles 
@. 

The precision of the value of the critical Rayleigh 
number predicted by the present numerical procedure 
depends on the grid numbers (N,, x N,). Numerical 
tests, using various mesh sizes were done for the same 
conditions in order to determine the best compromise 
between accuracy of the results and computing time. 
Typical results are presented in Table 2 for the case 
of a horizontal square cavity (i.e. @ = 0” and A = l), 
for which the exact value R” = 4rr2 has been predicted 
analytically in the past by Nield [2]. 

According to the above results, the error (%) of the 
computed values is found to vary linearly with h”, 
where h being the mesh size and a N 4 denoting the 
convergence rate of the numerical results. 

Based on the above results a mesh size of 10 x 10 
was adopted in this study for all cases dealing with 
(A N 1). However, for A N 8, a mesh size of 10 x 35 
was required. Further decrease of the mesh size did 
not cause any significant change in the final results. 

Instability via oscillatory convection (p # 0) : Galerkin 
method 

The marginal state of instability via oscillatory con- 
vection will be now discussed. Let us suppose that 
the perturbed stream function $, temperature 0 and 
concentration c~ fields are given by the following func- 
tions 

Table 1. Critical Rayleigh number I? for A = 1, @ = O”, 45” 
and 90” and for N,, = Nsy = 16 (m = 1089) 

@ = 0” @ = 45” cp = 90” 

i= 1 co -2075.093 - 184.069 
i=2 co -2161.500 -227.930 
i=3 co -3471.134 -489.868 

i=m-2 109.695 141.929 489.868 
i=m-1 61.688 81.920 227.930 
i=m 39.479 53.497 184.069 
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Table 2. Effect of the grid size on the precision of the computed value of p for (A = 1, CD = 0” and Le < 1) 

NC, x N, 
R0 
Error [%] 
CPU [s] 

1x4 8x8 
39.5183548 39.4809956 

1.01 x 10-l 6.53 x lo-’ 
3.9 98.1 

12x12 
39.4789301 

1.30 x 1o-3 
1123.6 

16x16 
39.4785801 
4.12 x 1O-4 

5830.3 

Ref. [2] 
39.47841760 

4%Y) = Il/ef(x>Y> 
%Y) = k?(X,Y) (36) 
cp(x9.Y) = cpos(x,Y) 

where I,& B0 and cpO iare the amplitudes of the dynamic 
perturbations ($, 0, rp) andf(x, y) andg(x,y) are space 
functions satisfying the boundary conditions in eqn 
(19). They describe the perturbed stream function, 
temperature and concentration fields at the onset of 
convection. Since the linear stability theory predicts 
only the size of the convective cells but says nothing 
about the flow intensity, the functions f&y) and 
g(x, y) have been normalized in such a way that 
0 < If(x,y)l G 1 and0 < Ig(x,y)l < 1. 

Substituting eqn (36) into eqns (20)-(22) and mak- 
ing use of w = f(x, y) and 9 = g(x, y), yields 

x&l = &a(& -%) (37) 
p.bveo-2qb, = -xeo (38) 

&Apcpo --qbo = -Le-‘Xc& (39) 
where 3, X,, X, 69 and .H are constants which can 
be computed from the following integrals 

X, = (v"dsz Xx= 
s 

(40) 
R 

us%= g*dR 
s R J 

For the problem considered here the functions 
f(x,y) and g(x, y) are in general difficult to be pre- 
dicted analytically and they were computed numeri- 
cally by the finite element model described above. 
Substituting_Qx, y) by tii and gi(x, y) by Oi,j or ‘pi,j and 
making use of eqn (27), the constants B, X,, X, _Y 
and ./I are obtained1 from the following expressions 

) 1 k 

where W is the total number of elements over the 
calculus domain and the superscript e refers to a finite 
element in the discretized domain. 

The precision of the above procedure can be 
assessed for the special case of an horizontal cavity 
(@ = 0’) for which, according to Nield’s analytical 
solution [2], the functionsf(x, y) and g(x, y) are given 
by 

f(x, y) = cos(nx) cod g(x, y) = cos(xx) sin(ny) 

(42) 

Substituting the above expressions into eqn (40) 
and performing the resulting integrals yields the fol- 
lowing results 

On the other hand, for a grid (16 x 16) it was found 
numerically, from the present numerical procedure 
[eqn (41)], that 

B = JZ’ = 0.785385 (44) 

X, = X = 4.934731 +# = 0.249996 

which are in good agreement with the exact solution 
[eqn (43)]. For a square vertical cavity (A = 1, 
CD = 90’) these constants have the following values 

a = 0.706584 _!Z = 0.976830 

Yrl = 13.374099 .X = 9.499478 (45) 

& = 0.245210 

Substituting eqns (38) and (39) into eqn (37) yields 
a second-order polynomial equation in terms of the 
growing rate p 

where 

P2 -2P,P,P--P;P* = 0 (46) 

Y 
PO = 2cLeR’ 

pI = R,Le(c-l)-R’(l+cLe) 

p2 = 4R”cLe[RT(1 -Le)-R”] 

(47) 

and the constants R” and y are defined by 

Solving eqn (46) for p, it is readily found that 
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According to eqns (46) and (47) the case p = 0 
corresponds to R,,-(1 -Le) = R”, in agreement with 
the results of eqn (34). However, in general, the con- 
stantp is a complex number which can be decomposed 
as 

p=q+io (50) 

where q and w are its real and imaginary parts, re- 
spectively. 

It can be easily demonstrated that 

4 = Pob, +JP: +p21 

w=o i 
if p:+p2 20 

\ \ (51) 
4 = POPI 

0 =poJm 1 . If p: +p2 < O J 
The marginal state of overstability corresponds to 

the condition q = 0, i.e. p, = 0. From eqn (47) the 
resulting overstable critical Rayleigh number, for the 
onset of oscillatory flows, is given by 

R”“’ _ Ro (eLe+ 1) 
TC- ~ Le(c - 1) 

it marks the transition from the oscillatory to direct 
convective modes. 

This oscillatory regime (o # 0) exists only when the 
condition pf+pz<O is satisfied, i.e. 
Ryp < R, < R;E, where the value of Ryz is deduced 
from the condition p: +p2 = 0 as 

R!$, = R” 
(ELe- 1) 

Le(e- 1)’ 
[e+1+2& (53) 

Figure 2 presents series of streamline, isotherm and 
isoconcentration patterns at the onset of convection 
as predicted by the linear stability analysis for a square 
cavity (A = 1) and various values of the inclination 
angle @ ranging from 0” to 90”. The results obtained 
for CJ = 90” will be discussed first. According to the 
linear stability theory results, it is found that there 
exists two eigenvalues with the same absolute value 
but different signs (1, = -1,) which corresponds to 
two mirror image solutions. From eqn (34), it is clear 
that the sign of R” in eqn (35), i.e. l/n, depends upon 
whether Le is greater or smaller than unity. In 
addition, it is noted that if the eigenvector {$}; is a 
solution of eqn (29) - {tj}: is also a solution. At the 
onset of convection, Figs 2(a) and 2(e) show the per- 
turbation fields for Le < 1 and Le > 1, respectively. 
As it can be observed from these figures, the flow 
structures consist of a primary tilted roll cell in the 
center of the cavity, squeezed by two secondary roll 
cells, one in the upper right corner and the other one 
in the bottom left corner for Le < 1 (or one in the 
upper left corner and the other one in the bottom 
right corner for Le > 1). Obviously, the three cells are 
counter-rotating. As mentioned above, for a given 

Lewis number, the primary cell can be clockwise and 
the secondary ones counterclockwise or vise versa. 
The stability of the two possible solutions will be dis- 
cussed later. 

Upon decreasing progressively the inclination angle 
Figs 2(b) and 2(c) show the flow patterns obtained at 
@ = 60” and 30”, respectively, when Le < l(R” > 0). 
The results indicate that the primary cell grows in size 
while the two secondary cells dwindle. This behavior 
is amplified as the value of CJ is reduced down to 
0 = O”, which is presented in Fig. 2(d). For this situ- 
ation, which corresponds to a cavity heated (desta- 
bilizing agent) and salted (stabilizing agent) from 
below, the resulting flow pattern is a single square cell 
occupying the entire cavity. This result is in fact simi- 
lar to the classical Rayleigh-BCnard situation 
observed in a horizontal porous layer heated from 
below (see reference [18]). The case with LX > 1, i.e. 
R” < 0, will be now discussed. As the inclination angle 
is decreased from 90” to 60” a transition from a three- 
cells pattern [Fig. 2(e)] to a four-cells pattern [Fig. 
2(f)] is observed. In the core of the cavity two large 
counterrotating cells are squeezed by two secondary 
circulations. The appearance of very small cells in the 
upper left and in the lower right corners is also noticed. 
This formation of a multicellular flow pattern is fur- 
ther favored as the value of @ is decreased down to 
@ = 30” for which Fig. 2(g) reveals the presence of 
seven counterrotating cells. Naturally, when @ = 0” 
the system is unconditionally stable since the buoy- 
ancy forces, resulting from the stabilizing agent (salt), 
are predominant over those occasioned by the desta- 
bilizing agent (heat). 

The numerically determined constant R” is pre- 
sented in Figs 3(a) and 3(b) as a function of the 
inclination angle of the enclosure @ for various values 
of the aspect ratio A. It is seen from the graphs that, 
for a given value of A, R” is an increasing function of 
@. The results obtained for A = 1, Fig. 3(a), indicate 
that when Le < 1, R” = 4n2 at @ = o”, in agreement 
with the analytical solution obtained by Nield [2], and 
increases monotonously up to infinity as @ -+ 180” 
(for which the buoyancy forces induced by the sta- 
bilizing agent (heat) overcomes those due to the desta- 
bilizing agent (concentration). On the other hand, for 
Le > 1, R” increases from - cc at cf, = 0” up to - 47c2 
as Q, = 180”. For a given inclination angle @, the exis- 
tence of two solutions, one corresponding to 
l,(R” < 0) and the other one to l,(R” > 0) is clearly 
observed. As discussed above, when @ = 90”, 
1, = -2, and the two corresponding flow patterns 
are the mirror image of each other [see Figs 2(a) and 
2(e)]. However, in general, for a given inclination 
angle Q the two eigenvalues 1, and 1, are not equal 
yielding two different solutions [see Figs 2(b) and 2(f), 
for @ = 60”]. The symmetry of the curves with respect 
to CD = 90” is evident from Figs 3(a) and 3(b). In fact, 
the present problem is completely described by the 
values of R” predicted in the range 0” < @ < 90” since 
the value of R” obtained for Le < 1 and a given @, is 
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b) 

Fig. 2. Streamline, isotherm and isoconcentration patterns at the onset of convection for Le < 1; (a) 
Q, = 90”, I?’ = 184.0687; (b) Q, = 60”, R” = 70.3585; (c) ‘B = 30”, R” = 44.9152, (d) Q = O”, I?’ = 39.4786 
and Le > 1; (e) @ = 90”. R” = - 184.0687 ; (f) @ = 60”, IS” = - 754.9608 ; (g) @ = 30”, JC” = -9387.2960 ; 

(hj ;D = 0” P= -CO. 

equal, but of oppo,site sign, to that obtained for Le > 1 
and (180” -0). The effect of the aspect ratio of the 
cavity A on @ is illustrated in Fig. 3(b) for A = 4 
and 0.25, respectively. Naturally, the flow structure 
obtained for a given value of 0 when Le < 1 is a 
mirror image of that corresponding to (180” - 0) and 
Le > 1. From Figs 3(a) and 3(b) it is observed that, 
for a given 0, an increase (decrease) in A lowers the 
critical values R”( R“ x A’) for the onset of convective 
motion. 

The influence o:f the aspect ratio A of the cavity on 
the incipient convection is illustrated on Figs 4(a) and 
4(b) for Q, = 90” and 0”, respectively. The case of a 
vertical cavity (@ = 90’) will be discussed first. For a 
square cavity l(A = l), as mentioned earlier, 
&’ = + 184.07 and the flow patterns consist of three 
counterrotating cells [Figs 2(a)-(e)]. Upon increasing 
A this flow pattern remains basically unchanged and 
R” decreases monotonously until A = 2. At A N 2.1 
an abrupt change in the variation of Rt! vs A occurs 
due to the transition from a three cells to a four cells 

flow. This regime is maintained up to A N 3 above 
which a five cells configuration is reached. This pro- 
cess is continued as the aspect ratio of the cavity is 
made larger and larger, as illustrated by the eight cells 
flow pattern depicted in Fig. 4(a) for the case A = 8. 
The numerical results indicate that, for A >> 1, the 
value of P tends towards a constant which becomes 
independent of the aspect ratio A (R” = 106.41 for 
A = 10). In this limit, which corresponds to the case 
of an infinite vertical porous layer, the flow pattern 
reveals the formation of a periodical structure con- 
sisting of tilted counter-rotating cells (see the stream- 
lines pattern in Fig. 4(a) for A = 8). Using periodic 
boundary conditions cf(x, y) = f(x, y + A,-), where J 
stands for $, 6 and $), it was found numerically that 
the critical wave number AC and the corresponding 
critical Rayleigh number are AC = 2.503 and 
p = 105.35 while the tilt angle of the cells with respect 
to the horizontal plane was N 65” (115”) when Le < 1 
(Lx > 1). Similar flow patterns have been reported in 
the past by Thangan et al. [ 191 while studying double- 
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Fig. 3. R” as a function of the inclination angle @ for (a) A = 1; and (b) A = 0.25 and 4. 

diffusive convection in an inclined fluid layer heated 
differentially from the sides with a stable constant 
solute gradient imposed in the vertical direction. The 
case of a shallow cavity (A < 1) has also been con- 
sidered in this study. It is observed from Fig. 4(a) 
that, upon using a scale R” x A*, the resulting curve 
for A < 1 is perfectly symmetrical with respect to that 
for A >, 1 (for instance compare the streamline pat- 
terns obtained for A = l/8 with those for A = 8). 

Although the variation of R” vs A for the case of an 
horizontal layer is well known, it is presented here 
[Fig. 4(b)] for comparison with the vertical layer. The 
present numerical solution, indicated by solid 
symbols, are seen to agree well with the analytical 
solution predicted by Nield [2]. These results apply 
only for I.e < 1 when @ = O”, for which the desta- 

bilizing agent (heat) acts from below, and for Le > 1 
when @ = 180”, i.e. when the destabilizing agent (con- 
centration) acts from above. The symmetry with 
respect to A = 1, reported for the vertical layer [Fig. 
4(a)], is observed to be destroyed in the case of the 
horizontal layer. This is due to the fact that for A < 1 
the only flow configuration possible, independently of 
the aspect ratio of the cavity, is a single cell (see the 
streamlines pattern for A = l/4). Thus, the value of 
R” x A* decreases monotonously from 4n2, when 
A = 1 to a? as the value of A --t 0, this limit being 
approximately reached by our numerical results when 
A < 0.1. On the other hand, upon increasing A from 
unity, up to A = fi, a one cell mode prevails and P 
increases from 4s2 to 9a2/2. Above A = fis the flow 
exhibits a two-cells mode and R” decreases from 9x2/2 
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to 47~’ as the value of A increases from ,/2 to 2. This 
process continues as the value of A is made larger and 
since the half wave number for the incipient 
convection in a horizontal layer corresponds to 
A = 1, the value !Z” = 47~’ will be reached for all inte- 
ger multiples of .A (i.e. A = 1,2,3 . . . . In general, 
at each value of A = A,, = jl n(n+ I), the num- 
ber of cells increases from n to n+ 1 and the corre- 
sponding value of the incipient convection is 
R” = (A~+n2)2rc’~/(A~n2). An example of this situ- 
ation is depicted by the numerical results presented in 

Fig. 4(b) where four cells are obtained for an aspect 
ratio A = 4. 

FINlTE AMPLITUDE CONVECTlON 

In order to study the convection flow structures 
prevailing at Rayleigh numbers above the onset of 
motion, the full governing eqns (2)-(4) with the 
associated boundary conditions (7) are solved by a 
finite-difference method. The stream function, tem- 
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perature and concentration equations are first dis- 
cretized according to the well-known central differ- 
ence scheme for a rectangular mesh size. The 
discretized equations for Y, T and S are then solved 
at each time step using the last available field values, 
until convergence to a steady or to a stationary oscil- 
lations state is achieved. The energy and concentration 
equations were solved using the alternating direction 
implicit method (ADI) of Peaceman and Rachford 
(Roache [20]). The stream function equation, on the 
other hand, is solved by the Gauss-Seidel (SOR) iter- 
ative scheme at each time step with a relaxation factor 
of 1.78. A computational grid of 80 x 80 for A = 1 
and 80 x 160 for A = 4 was used in this study. This 
numerical approach was validated by comparing the 
results obtained with those of Trevisan and Bejan [S]. 
Grid refinement tests indicate that the heat and mass 
transfer rates and the stream function values were 
within 1%. Further details regarding the validation of 
the numerical simulation may be found in Mamou et 
al. [lo, 131. 

From the results of the linear stability analysis, 
presented in the preceding section, it is noticed from 
eqn (34) that, for Le = 1 and E = 1, the only possible 
steady state solution is the rest state. This result fol- 
lows from the fact that, for this situation, the heat and 
the species diffuse at the same rates, such that the 
temperature and concentration fields are identical 
throughout the domain, giving rise to a nil source 
term in the momentum equation for any value of the 
Rayleigh number. This point has been discussed in 
the past by Gobin and Bennacer [21] in the context of 
the onset of double diffusive natural convection in a 
vertical layer of binary fluid submitted to equal and 
opposing horizontal thermal and solutal gradients. 
In the case of a fluid layer, the equations describing 
conservation of energy and constituents are the same, 
when Le = 1, such that a rest state will prevail inde- 
pendently of the fact that the steady or the unsteady 
forms of these equations are considered. On the other 
hand, in the case of a porous layer it is clear from eqns 
(3) and (4) that, for Le = 1, the transient behavior of 
the temperature and concentration fields are identical 
only when the normalized porosity E = ~$/a, appearing 
in the first term on the left hand side of eqn (4), is 
equal to unity. However, in practical situations, since 
C$ < ~7 it is clear that 0 < E < 1, such that time-depen- 
dent flows are possible, even when the Lewis number 
is equal to unity. For this situation, the solutal diffus- 
ing rate is more important that the thermal one and 
as a result the temperature field becomes different 
from that of the concentration which gives rise to a 
non-zero buoyancy force in the momentum equation. 
In Fig. 5 the time history of the maximum and mini- 
mum values of the stream function and the Nusselt 
and Sherwood numbers are presented for a vertical 
square cavity (Q = 90”, A = 1) when RT = 400, 
Le = 1 and E = 0.2. The results clearly indicate the 
existence of a permanently oscillating flow. To ensure 
a sustained oscillation the time integration was con- 

tinued up to t = 10. It is observed from the graph that 
the period of the flow oscillation is about r = 0.06. 
Streamlines at the time indicated with (a), (b), (c), 
(d), (e) and (f), are presented in Fig. 5. A flow reversal, 
from the thermally dominated structure [Figs 5(a) and 
5(f)] to a solutably dominated structure [Fig. 5(e)], 
is observed to occur in a very short period of time 
(& = 0.06). It is noted that, for the reason discussed 
above (a # I), Nu and Sh are different from each other 
even though the value of Le is equal to unity. 

Figure 6 shows the stability diagram, predicted by 
the linear stability analysis developed in the present 
study, for the case E = 0.2. In the graph, the Rayleigh 
number RT is normalized with respect to the constant 
R’(Rf = R,/IROI) such that the resulting curves are 
valid for the general case of rectangular cavity with 
both arbitrary aspect ratio A and inclination angle Q 
(excepted for CJ = 0” when Le > 1 and for CJ = 180” 
when Le < 1 where the constant R” tends towards 
infinity). All numerical results reported here were 
obtained for the special case of vertical cavity 
(@ = 90’) with an aspect ratio A = 1. In the R;-Le 
plane, three different regions are delineated by the 
curves resulting from eqns (34), (52) and (53). In 
region Z, below the neutral overstable curve (eqn (34)) 
and the neutral stable curve (eqn (52)), the system is 
expected to be stable according to the linear stability 
theory ; the real part q of p (eqn (51)) is negative, 
such that the flow is decaying with time. Indeed, this 
prediction is confirmed by the computational data 
which indicate that in that region, starting with the 
pure diffusive solution as initial conditions, the fluid 
remains motionless. To ensure a permanent rest state, 
the time integration was continued up to t = 500. 

In region II, above the neutral stability line (eqn 
(34)) and the neutral oscillating stability line (eqn 
(53)), a development of instability, via stationary con- 
vection, is expected to occur according to the linear 
stability analysis. All the numerical results obtained 
in that region demonstrate the existence of a finite 
amplitude convective mode. As a matter of fact, in 
region II, the linear stability analysis indicates that 
the real part q of p [eqn (5 l)] is positive which means 
that the flow, independently of the initial conditions, 
will grow with time. However, this theory predicts 
only the size of the convective cells and their evolution 
with time at the very beginning of convection but says 
nothing about their amplitude or about the behavior 
of the final converged convective mode (permanent or 
oscillatory). In other words, the linear stability analy- 
sis is valid up to the point where the non-linear terms 
become strong enough to overcome the linear ones. 

Depending upon R! and LX the numerical results 
presented in Fig. 6 show that the resulting convective 
modes can be either stationary or oscillatory. For 
instance, when Le = 4, upon increasing Rt step by 
step, a transition from the conductive to a steady 
convective region occurs at R: = l/3, as predicted by 
eqn (34). This steady state convective regime prevails 
approximately up to Rt = 3, above which the 
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a) b) 

4 4 f) 

Fig. 5. Time history of Y’,.,, Y,in, Nu and Sh and selected streamline patterns for RT = 400, A = 1, Le = 1, 
E = 0.2 and @ = 90”. 

existence of oscillatory periodic flows is observed. The 
value of R; at w!hich transition occurs depends stron- 
gly upon the value of Le. Thus, when Le = 0.2 a value 
of R; as high as ~1.5 is required to reach the oscil- 
latory mode. Another way to describe this phenomena 
is to vary the value of Le for a fixed value of R!. Thus, 
when R! = 2, upon increasing Le from 0.1 to 0.5 the 
numerical results indicate that the convective flows 
remain stationary but the strength of the convection 
decreases gradually. Passing through the stable region 
the solution remains purely diffusive up to Le u 0.71. 
Upon increasing further Le the flow becomes oscil- 
latory up to Le =: 2, above which it is stationary again. 

The last region to be discussed is identified by III 
in Fig. 6. This region is bounded by the lines cor- 
responding to eqns (34), (52) and (53). Here, the linear 
stability analysis predicts that both real and imaginary 
parts (q and w) of p [eqn (51)] are positive. This 
implies that, as confirmed by the numerical results, 
when starting the numerical simulations with the pure 
diffusive solution as an initial condition, the flow, 
temperature and concentration amplitudes oscillate 
right at the beginning of convective motion and grow 
with time. For this situation, the flow structure is 
multi-cellular and evolves from counter-clockwise to 
clockwise circulation and vice versa. An example of 
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this evolution is illustrated in Fig. 5 for R$ = 2.174, 
Le = 1 and E = 0.2. It is worth mentioning that eqns 
(34), (52) and (53) (for Le > 1) intersect at a point 
having the coordinates 

(54) 

Similar expressions can be derived for the intersection 
between eqns (52) and (34) and between eqns (53) 
and (34). However, since the resulting equations are 
lengthy they are not presented here. From these results 
it can be deduced that the oscillatory region III 
becomes narrower when E -+ 1 and wider when E + 0. 

Figures 7(a) and 7(b) illustrate the influence of the 
Rayleigh number RT on the maximum and the mini- 
mum values of the stream functions ‘I”,,, and yl,i”, 
respectively, and the average Nusselt and Sherwood 
numbers, for the case A = 1, 0 = 90”, Le = 10 and 
E = 1. Starting our computation from the purely 
diffusive solution it was found that this solution can 
be maintained when RT was below the critical value 
RTC = 20.45 predicted by eqn (34). However, for 
& > &c, this rest state is unstable, though it con- 
tinues to be the solution of the governing equations. 
A stable convective regime bifurcates from the rest 
state at RT = RTc, for which both Nu and Sh increase 
with the Rayleigh number. The resulting supercritical 
convective regime is characterized, as expected, by 

symmetrical solutions as exemplified by Figs 7(d) and 
7(e) for RT = 25 and 100, respectively. However, upon 
using a finite amplitude flow as an initial condition, 
another branch of solutions was found to exist in 
the range 13 < RT < 35. This second set of solutions 
corresponds to non-symmetrical flow patterns as illus- 
trated by Fig. 7(c) for RT = 25. It is noted that this 
non-symmetrical branch is maintained down to 
RT = 13, i.e. below RTC = 20.45, the critical Rayleigh 
number value for the onset of supercritical convection. 
Thus for 13 < R, < 20.45 two different types of solu- 
tion are possible, a purely diffusive regime and a sub- 
critical finite amplitude convective regime. The 
coexistence of the two finite amplitude solutions are 
also observed to occur in the range 20.45 < R, < 25.5. 
In addition, it is worth mentioning that, as discussed 
earlier, the linear stability analysis predicts that, for 
Le = 10 (Le > l), the flow structure consists of three 
counterrotating cells [see Fig. 2(e)]. A similar flow 
structure has been obtained while solving numerically 
the full system of governing eqns (1 l)-( 13). However, 
it was found from the numerical solution that only 
the flow pattern consisting of a primary clockwise 
rotating cell, at the center of the enclosure, could be 
sustained. Thus, the other solution predicted by the 
stability theory, with a primary clockwise rotating 
circulation, is believed to be unstable. 

Figures 8(a) and 8(b) provides another example of 
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the bifurcation diagrams of Y’,,,, Y,i,, Nu and Sh for CONCLUSIONS 
the case A = 4, QD = 90”, Le = 10 and E = 1. Above 
the critical value &c = 12.34, eqn (34), the numerical 

A study has been made of the onset of double 

results indicate the existence of a single branch cor- 
diffusive natural convection in an inclined porous cav- 

responding to a symmetrical solution illustrated by 
ity with equal and opposing buoyancy forces due to 

Figs S(c) and 8(ld). This convective flow pattern is the imposition of transverse gradients of heat and 

maintained up to RT = 40 where the flow pattern 
solute, applied on two opposing walls of the cavity. 

bifurcates, with discontinuity, on a different branch 
The critical stability limit was investigated through a 

corresponding to a non-symmetrical solution [see the 
numerical linear stability analysis using the Galerkin 

flow pattern of Fig. 8(e)] that could be maintained up 
finite element method, while a finite difference method 

to RT = 100 or more. Also, by decreasing the Raleigh 
was used to simulate convective flows. The main con- 

number below the critical value R,, = 12.34, it was 
elusions of the present analysis are : 

possible to continue the symmetrical branch down to (1) The marginal states of instability via stationary 
RT = 11.7. This result indicates here also the existence and oscillatory modes have been determined numeri- 
of a subcritical convective regime. tally in terms of the governing parameters of the prob- 
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lem, namely the inclination angle, the aspect ratio 
of the cavity, the Lewis number and the normalized 
porosity of the porous medium. 

(2) When the Lewis number is equal to unity, insta- 
bility via oscillatory convection is the only possible 
mode since, for this situation, the supercritical Ray- 
leigh number for the onset ofconvection via stationary 
convection is infinity. Overstable modes, however, are 
possible only when the normalized porosity is smaller 
than unity. 

(3) The numerical results, obtained for finite ampli- 
tude convection, demonstrate the existence of sub- 
critical convective regimes, the extent of which 
depends upon the Lewis number, the normalized 
porosity of the porous medium and the aspect ratio 
of the cavity. A non-linear stability analysis would be 
required to study this phenomenon in more detail. 
Also, for a given set of the governing parameters, 
transitions between symmetrical and non-symmetrical 
convective regimes have been observed upon increas- 
ing the Rayleigh number. The coexistence of the sym- 
metrical and non-symmetrical solutions was found to 
occur in a small range of the Rayleigh numbers. 

Finally, it is noted that the present linear stability 
analysis is limited by the assumption of two-dimen- 
sional flow and nothing can be inferred about the 
possible development of three-dimensional insta- 
bilities within the range of inclination angle and aspect 
ratio considered in the present study. 
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